158 research outputs found

    Social and endocrine correlates of immune function in meerkats : implications for the immunocompetence

    Get PDF
    Social status can mediate effects on the immune system, with profound consequences for individual health; nevertheless, most investigators of status-related disparities in freeranging animals have used faecal parasite burdens to proxy immune function in the males of male-dominant species. We instead use direct measures of innate immune function (complement and natural antibodies) to examine status-related immunocompetence in both sexes of a femaledominant species. The meerkat is a unique model for such a study because it is a cooperatively breeding species in which status-related differences are extreme, evident in reproductive skew, morphology, behaviour, communication and physiology, including that dominant females naturally express the greatest total androgen (androstenedione plus testosterone) concentrations. We found that, relative to subordinates, dominant animals had reduced serum bacteria-killing abilities; also, relative to subordinate females, dominant females had reduced haemolytic complement activities. Irrespective of an individual’s sex or social status, androstenedione concentrations (but not body condition, age or reproductive activity) negatively predicted concurrent immunocompetence. Thus, dominant meerkats of both sexes are immunocompromised. Moreover, in female meerkats, androstenedione perhaps acting directly or via local conversion, may exert a double-edged effect of promoting dominance and reproductive success at the cost of increased parasitism and reduced immune function. Given the prominent signalling of dominance in female meerkats, these findings may relate to the immunocompetence handicap hypothesis (ICHH); however, our data would suggest that the endocrine mechanism underlying the ICHH need not be mediated solely by testosterone and might explain trade-offs in females, as well as in males.This work was supported by the National Science Foundation (IOS-1021633 to C.M.D. and IOS-1601685 to C.M.D. and K.N.S.) and the Duke University Graduate School (Judy C. Woodruff Fellowship, Fred and Barbara Sutherland Fellowship and Katherine Goodman Stern Fellowship to K.N.S.). Vehicle costs in the field were supported by Duke University (research funds to C.M.D.). We relied on records of individual life histories and access to a field site maintained by the KalahariMeerkat Project (KMP). During the span of this study, the KMP was supported by the European Research Council (Research grant no. 294494 to T.H.C.-B.), the University of Cambridge, the University of Zurich, the Mammal Research Institute at the University of Pretoria and Duke University.http://rsos.royalsocietypublishing.orgam2019Mammal Research Institut

    ABA triblock copolymers: from controlled synthesis to controlled function

    Get PDF
    The ABA amphiphilic block copolymers, poly(hydroxyethyl methacrylate-hlock-methylphenylsilane-block-hydroxyethyl methacrylate) (PHEMA-PMPS-PHEMA) and poly[oligo(ethylene glycol) methyl ether methacrylate-block-methylphenylsilane-block-oligo(ethylene glycol). methyl ether methacrylate] (POEGMA-PMPS-POEGMA) were successfully synthesised via atom transfer radical polymerisation (ATRP). Macroinitiators suitable for the ATRP of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate were synthesised from the condensation reaction of alpha,omega-dihalopolymethylphenylsilane and 2'-hydroxyethyl 2-bromo-2-methylpropanoate. The copolymers were characterised using H-1 NMR and C-13 NMR spectroscopy and molecular weight characteristics were determined using size exclusion chromatography and H-1 NMR. The aggregation behaviour of some of the copolymers in water was studied using transmission and scanning electron microscopy and dynamic light scattering. These revealed the prevalent aggregate species to be micelles. Larger aggregates of 300-1000 nm diameter were also observed. The UV induced degradation of the aggregates was studied by UV-Vis spectroscopy. The thermal behaviour of selected copolymers was studied by differential scanning calorimetry and microphase separation of the two components was demonstrated

    Circulating BMP9 Protects the Pulmonary Endothelium during Inflammation-induced Lung Injury in Mice.

    Get PDF
    Rationale: Pulmonary endothelial permeability contributes to the high-permeability pulmonary edema that characterizes acute respiratory distress syndrome. Circulating BMP9 (bone morphogenetic protein 9) is emerging as an important regulator of pulmonary vascular homeostasis. Objectives:To determine whether endogenous BMP9 plays a role in preserving pulmonary endothelial integrity and whether loss of endogenous BMP9 occurs during LPS challenge. Methods: A BMP9-neutralizing antibody was administrated to healthy adult mice, and lung vasculature was examined. Potential mechanisms were delineated by transcript analysis in human lung endothelial cells. The impact of BMP9 administration was evaluated in a murine acute lung injury model induced by inhaled LPS. Levels of BMP9 were measured in plasma from patients with sepsis and from endotoxemic mice. Measurements and Main Results: Subacute neutralization of endogenous BMP9 in mice (N = 12) resulted in increased lung vascular permeability (P = 0.022), interstitial edema (P = 0.0047), and neutrophil extravasation (P = 0.029) compared with IgG control treatment (N = 6). In pulmonary endothelial cells, BMP9 regulated transcriptome pathways implicated in vascular permeability and cell-membrane integrity. Augmentation of BMP9 signaling in mice (N = 8) prevented inhaled LPS-induced lung injury (P = 0.0027) and edema (P < 0.0001). In endotoxemic mice (N = 12), endogenous circulating BMP9 concentrations were markedly reduced, the causes of which include a transient reduction in hepatic BMP9 mRNA expression and increased elastase activity in plasma. In human patients with sepsis (N = 10), circulating concentratons of BMP9 were also markedly reduced (P < 0.0001). Conclusions: Endogenous circulating BMP9 is a pulmonary endothelial-protective factor, downregulated during inflammation. Exogenous BMP9 offers a potential therapy to prevent increased pulmonary endothelial permeability in lung injury

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Stratification of asthma phenotypes by airway proteomic signatures

    Get PDF
    © 2019 Background: Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy in prediction of treatment responses and a need for better understanding of the underlying mechanisms. Objective: We sought to identify molecular subphenotypes of asthma defined by proteomic signatures for improved stratification. Methods: Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyze the proteomes of sputum supernatants from 246 participants (206 asthmatic patients) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms. Results: Analysis of the sputum proteome resulted in 10 clusters (ie, proteotypes) based on similarity in proteomic features, representing discrete molecular subphenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined 3 of these as highly eosinophilic, 3 as highly neutrophilic, and 2 as highly atopic with relatively low granulocytic inflammation. For each of these 3 phenotypes, logistic regression analysis identified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms. Conclusion: This study provides further stratification of asthma currently classified based on quantification of granulocytic inflammation and provided additional insight into their underlying mechanisms, which could become targets for novel therapies
    corecore